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Introduction 
Caffeine (1,3,7-trimethylxanthine), a purine alkaloid, is 

one of the most widely consumed pharmacologically 
active substances globally. Common sources of caffeine 
include coffee, soft drinks, chocolate, and tea.[1] 

Structurally similar to adenosine, caffeine acts as a mixed 
competitive antagonist with nearly equal affinity for 
adenosine A1 receptor (A1R) and adenosine A2A receptor 
(A2AR).[2,3] 

In terms of the central nervous system (CNS), caffeine 
exhibits dose-dependent stimulatory effects, leading to 
behavioral arousal, increased alertness, hyper-excitability, 
restlessness, and tremors.[4] Studies in both animals and 

humans have shown the proconvulsant effects of caffeine. 
High doses of caffeine (200 mg/kg and above) have been 
found to induce seizures in rodents and primates.[5] A 
recent systematic review also suggests that caffeine may 
increase seizure susceptibility.[6] However, the relationship 
between caffeine, seizures, and epilepsy remains a 
contentious topic. The dose-dependent effects of caffeine 
on seizures have been questioned in certain animal models 
of epilepsy.[7-9] Additionally, some clinical studies have 
reported that daily consumption of high-dose caffeine (up 
to 400 mg) does not necessarily increase seizure risk.[10,11] 
These conflicting findings may stem from variations in 
caffeine dosage or animal models used. Our previous study 
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focused solely on the time to onset of clonic seizure 
threshold,[9] while tonic-clonic seizures are induced in 
specific animal models of epilepsy such as maximal 
electroshock (MES).[7] Therefore, reporting both clonic 
and tonic seizures may help clarify these discrepancies. 

Nitric oxide (NO) is a well-known gaseous signaling 
molecule produced from L-arginine by various nitric oxide 
synthase (NOS) isoforms, including endothelial NOS 
(eNOS), neuronal NOS (nNOS), and inducible NOS 
(iNOS).[12] NO plays a role in regulating behavioral, 
cognitive, and emotional processes such as anxiety, 
depression, learning, and seizure activity.[13] Its effects on 
seizures can be either anticonvulsant or proconvulsant, 
depending on the seizure model or administration 
route.[14-16] Adenosine influences NO production by 
activating A1R and A2AR.[17] Given that caffeine 
antagonizes adenosine receptors (ARs), it can potentially 
modulate NO production. Notably, the non-specific NOS 
inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) 
has been shown to counteract the effects of caffeine on 
antinociception and locomotor activity.[18,19] Our previous 
research indicated that 100 mg/kg caffeine reduced NO 
metabolite levels,[9] while caffeine also counteracted 
ethanol-induced cerebral artery constriction through 
endothelial NO.[20] 

 
Objectives 

It appears that caffeine's mechanism of action extends 
beyond AR antagonism. Other signaling pathways, such as 
the NO-cyclic guanosine monophosphate (cGMP) 
pathway, likely play a role in the central effects of caffeine. 
Therefore, this study aims to explore the impact of acute 
caffeine administration on pentylenetetrazole (PTZ)-
induced clonic and tonic seizure thresholds in mice. 
Additionally, we will investigate the potential interaction 
between caffeine and NO in modulating seizure 
susceptibility. 
 
Methods 

Animals 
NMRI male mice weighing 25-30 g (age 5–6 weeks), bred 

in the animal house of the Physiology Research Center at 
Kashan University of Medical Sciences, were utilized in 
this study. The animals were housed in standard 
polypropylene cages at a constant temperature (22±2 ºC) 
and humidity (50-55%) with a 12-hour light and 12-hour 
dark cycle. 

 

Chemicals 
The chemicals and drugs used in this study included 

PTZ, caffeine, L-arginine (a substrate for NOS), sodium 
nitroprusside (SNP) (a NO donor), and L-NAME. All the 
mentioned drugs were obtained from Sigma (USA). PTZ 
(0.5% solution) was prepared in heparinized sterile saline 
0.9% and administered as an intravenous (iv) infusion. All 
drugs were dissolved in normal saline solution at the 
desired concentrations and administered via the 
intraperitoneal (ip) route in a volume of 5 ml/kg of body 
weight. 

 

Experiments 
The animals were randomly divided into 19 groups, with 

each experimental group consisting of 8 mice based on 
pilot experiments and previous studies on this seizure 
model.[9,21] 

In experiment 1 (comprising 4 groups), animals received 
an ip injection of different doses of caffeine (10, 50, and 
100 mg/kg) 30 minutes before PTZ infusion. Control 
animals received the same volume of saline. Based on this 
experiment, caffeine doses of 10 and 100 mg/kg were used 
in subsequent experiments to study possible interactions 
with the NO-cGMP pathway. 

In experiment 2 (comprising 9 groups), mice were 
acutely administered different doses of L-arginine (50, 100, 
and 500 mg/kg), SNP (3, 6, and 9 mg/kg), or L-NAME (5, 
15, and 30 mg/kg) 45 minutes before PTZ infusion. 

In experiment 3 (comprising 6 groups), we examined the 
effect of pre-treatment with non-effective doses of L-
arginine (50 mg/kg), SNP (3 mg/kg), or L-NAME (5 
mg/kg) 15 minutes before administration of 10 or 100 
mg/kg caffeine. In all pre-treatment groups, PTZ was 
infused 30 minutes after caffeine administration. 

 
Seizure Induction 
PTZ concentration (5 mg/ml) was dissolved in 

heparinized sterile saline (0.9%) to prepare a fresh solution 
for intravenous (iv) infusion. The dose and infusion rate of 
PTZ were 5 mg/ml in saline and 0.5 ml/min, respectively. 
Before testing, each mouse was weighed, restrained in a 
clear acrylic plastic cage, and its tail was immersed in a 
warm water bath (40°C) for 1 minute to dilate the tail 
veins. The lateral tail vein of the mouse was catheterized 
with a 30-gauge dental needle attached to No.10 
polyethylene tubing, secured to the tail by adhesive tape. 
The PE tubing (approximately 50 cm in length) was 
connected to a 10 ml plastic syringe containing the PTZ 
solution mounted into a syringe pump (Top, Japan). The 
PTZ solution was then infused into the tail vein of the 
freely moving mouse at a constant rate of 0.5 ml/min. The 
times (in seconds) from the start of infusion to the 
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appearance of myoclonic twitch (MC twitch) or tonic hind 
limb extension (THE) were recorded for each mouse. The 
recorded times were then converted to mg/kg PTZ for each 
mouse based on the PTZ dose administered and time-
related factors.[9, 21-22] 

 

Statistical analysis 
All data were presented as mean ± standard error (SE). The 
significance of differences in seizure threshold was 
assessed using one-way analysis of variance (ANOVA) 
followed by Tukey’s test for multiple comparisons. All 
statistical analyses were performed with SPSS (version 
24.0, SPSS Inc, Chicago, IL, USA). A “P-value” less than 
0.05 was considered significant.  

 

Ethical considerations 
The study was conducted in accordance with the 

Declaration of Helsinki. All experiments were conducted 
following the guidelines for the Care and Use of 
Laboratory Animals (National Institutes of Health 
Publication No. 85-23, revised 1985) and were approved 
by the Research and Ethics Committee of Kashan 
University of Medical Sciences (ethics code: 
IR.KAUMS.MEDNT.REC.1398.075), Kashan, Iran.  

Results 
Effect of caffeine on the threshold dose for the onset of 

MC twitch and THE 
One-way ANOVA for analyzing the threshold dose for 

the onset of MC twitch showed a significant difference 
among the groups administered with caffeine at doses of 
10, 50, and 100 mg/kg [Figure 1A]. Post hoc analysis 
revealed that caffeine at doses of 10 and 50 mg/kg 
significantly decreased the threshold dose for the onset of 
MC twitch compared to saline-treated control animals 
(p<0.01 and P<0.05, respectively). 

One-way ANOVA for analyzing the threshold dose for 
the onset of THE also showed a significant difference 
(F3,28=27, P<0.001) among the groups administered with 
caffeine at doses of 10, 50, and 100 mg/kg [Figure 1B]. Post 
hoc comparisons indicated a significant proconvulsant 
effect for all doses of caffeine (10, 50, and 100 mg/kg) 
compared to saline-treated control animals (P<0.05, 
P<0.001, and P<0.001, respectively). The lowest and 
highest doses of caffeine (10 and 100 mg/kg, respectively) 
were selected for further experiments to explore the 
potential interaction of caffeine with the NO-cGMP 
pathway.

 

  
Figure 1. Effect of acute administration of caffeine (10, 50, and 100 mg/kg, ip) on the PTZ-induced seizure threshold. Mice were 

infused with PTZ and observed for the onset to MC twitch (A) and THE (B).  *P<0.05, **P<0.01 and ***P<0.001 in comparison with saline-
treated control group (mean ± S.E.M, n=8). 

 

 
Effect of per se doses of L-Arginine, SNP, or L-NAME 

on the threshold dose for the onset of MC twitch and 
THE 

When L-arginine (10, 100, and 500 mg/kg), SNP (3, 6, 
and 9 mg/kg), or L-NAME (5, 15, and 30 mg/kg) was 
administered per se, one-way ANOVA for analyzing the 
threshold dose for the onset of MC twitch showed a 
significant effect for L-arginine (F3,28=5.08, p=0.006) and 
SNP (F3,28=5.32, p=0.005), but not for L-NAME 
(F3,28=0.89, p=0.46) [Figure 2A]. Post hoc comparisons 

indicated a significant proconvulsant effect for L-arginine 
at doses of 100 and 500 mg/kg (P<0.05 and P<0.01, 
respectively) or SNP at a dose of 9 mg/kg (P<0.05). 

When L-arginine (10, 100, and 500 mg/kg), SNP (3, 6, 
and 9 mg/kg), or L-NAME (5, 15, and 30 mg/kg) was 
administered per se, one-way ANOVA for analyzing the 
threshold dose for the onset of THE showed a significant 
effect for SNP (F3,28=4.05, p=0.016), but not for L-NAME 
(F3,28=1.58, p=0.22) or L-arginine ((F3,28=1.96, p=0.14) 
[Figure 2B].
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Figure 2. Effects of pretreatment with L-arginine (50, 100, and 500 mg/kg), SNP (3, 6, and 9 mg/kg) or L-NAME (5, 15, and 30 

mg/kg) on the PTZ-induced seizure threshold. Mice were infused with PTZ and observed for the onset to MC twitch (A) and THE (B). 
*P<0.05 and **P<0.01 in comparison with the saline-treated control group (mean ± S.E.M, n=8). 

 
Effect of pretreatment with L-Arginine, SNP, or L-

NAME before caffeine (10 mg/kg) on the threshold dose 
for the onset of MC twitch and THE 

One-way ANOVA revealed a significant effect on the 
onset of MC twitch (F4,35=23, p<0.001) when non-effective 
doses of L-arginine (50 mg/kg), SNP (3 mg/kg), or L-
NAME (5 mg/kg) were administered before caffeine (10 
mg/kg) [Figure 3A]. Post hoc analysis indicated that L-
arginine or SNP significantly decreased (p<0.05 and 
p<0.01, respectively), while L-NAME significantly 

increased (p<0.05) the threshold dose for the onset of MC 
twitch compared to the saline+caffeine 10 mg/kg group. 

One-way ANOVA also showed a significant effect on the 
onset of THE (F4,35=16.3, p<0.001) when non-effective 
doses of L-arginine (50 mg/kg), SNP (3 mg/kg), or L-
NAME (5 mg/kg) were administered before caffeine (10 
mg/kg) [Figure 3B]. Post hoc analysis revealed that L-
NAME significantly increased the threshold for the onset 
of MC twitch compared to the saline+caffeine 10 mg/kg 
group.

 

  
Figure 3. Effects of pre-treatment with L-arginine, SNP or L-NAME before caffeine (10 mg/kg) in mice. L-arginine (50 mg/kg), 

SNP (3 mg/kg), L-NAME (5 mg/kg) or saline were injected 15 min before a proconvulsant dose of caffeine (10 mg/kg). Mice were 
infused with PTZ 30 min alter and observed for the onset to MC twitch (A) and THE (B).  *P<0.05, and ***P<0.001 in comparison with saline-
treated control group, +P<0.05 and ++P<0.01 in comparison with saline+caffeine 10 mg/kg group (mean ± S.E.M, n=8). 

 
 
Effects of pretreatment with L-Arginine, SNP, or L-

NAME before caffeine (100 mg/kg) on the threshold 
dose for the onset of MC twitch and THE 

One-way ANOVA demonstrated a significant effect on 
the onset of MC twitch (F4,30=9.39, p<0.001) when non-

effective doses of L-arginine (50 mg/kg), SNP (3 mg/kg), 
or L-NAME (30 mg/kg) were administered before caffeine 
at a dose of 100 mg/kg [Figure 4A]. Post hoc analysis 
showed that L-arginine and SNP, but not L-NAME, 
further decreased the threshold dose for the onset of MC 
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twitch compared to the saline+caffeine 100 mg/kg group 
(p<0.01 and p<0.001, respectively). 

Similarly, one-way ANOVA revealed a significant effect 
on the onset of THE (F4,30=49.1, p<0.001) when non-
effective doses of L-arginine (50 mg/kg), SNP (3 mg/kg), 
or L-NAME (30 mg/kg) were administered before caffeine 
at a dose of 100 mg/kg [Figure 4B]. Post hoc analysis 

indicated that L-arginine and SNP significantly decreased 
(p<0.01 and p<0.001, respectively), while L-NAME 
significantly increased (P<0.001) the threshold dose for the 
onset of THE compared to the saline+caffeine 100 mg/kg 
group. Notably, pretreatment with L-NAME abolished the 
proconvulsant effect of 100 mg/kg caffeine.

 

  
Figure 4. Effects of pre-treatment with L-arginine, SNP or L-NAME before caffeine (100 mg/kg) in mice. L-arginine (50 mg/kg), 

SNP (3 mg/kg), L-NAME (15 mg/kg) or saline were injected 15 min before a proconvulsant dose of caffeine (100 mg/kg). Mice 
were infused with PTZ 30 min alter and observed for the onset to MC twitch (A) and THE (B). *P<0.05, **P<0.01 and ***P<0.001 in comparison 
with saline-treated control group, +P<0.05, ++P<0.01, and +++P<0.001 in comparison with saline+caffeine 100 mg/kg (mean ± S.E.M, n=8). 

 
Discussion 

PTZ binds to a distinct site separate from the picrotoxin 
binding site on the GABA receptors.[23] PTZ-induced 
GABA inhibition enhances excitatory transmission in the 
forebrain (the origin of MC twitch) and hindbrain (the 
origin of THE) structures.[22] The intravenous PTZ seizure 
threshold test serves as an extremely sensitive model for 
evaluating seizure thresholds. This model assesses the 
threshold for both MC twitch and THE, enabling a 
separate examination of drug effects on different seizure 
types in the same animals. 

Consistent with our previous study,[9] caffeine at doses of 
10 and 50 mg/kg exhibited a proconvulsant effect and 
significantly reduced the threshold dose for the onset of 
MC twitch and THE. Conversely, at a dose of 100 mg/kg, 
caffeine notably decreased the threshold dose for the onset 
of THE without affecting MC twitch [Figure 1]. We also 
investigated the potential involvement of the NO–cGMP 
pathway in caffeine's effects (at 10 and 100 mg/kg). Our 
findings demonstrated interactions between L-arginine 
(an NOS precursor), SNP (a NO donor), or L-NAME (a 
non-selective NOS inhibitor) with caffeine [Figure 4]. 

Caffeine (1,3,7-trimethylxanthine), a member of the 
purine alkaloids family, acts as a non-selective antagonist 

of A1R and A2AR. A1R is widely distributed in the forebrain 
and hindbrain, while A2AR is exclusively found in the 
forebrain, particularly in the cerebral cortex, 
hippocampus, and striatum. A1R exhibits high affinity for 
adenosine at around 70 nM, whereas A2AR has lower 
affinity at approximately 150 nM.[24,25] Adenosine, an 
inhibitory neuromodulator in the CNS, exerts an 
anticonvulsant effect through A1R activation.[26,27] In our 
prior study, low-dose caffeine or 8-CPT, a selective A1R 
antagonist, displayed a proconvulsant effect.[9] Various 
animal studies have suggested that low doses of caffeine 
increase seizure susceptibility.[9,28] The current study's 
results indicated that both 10 and 50 mg/kg of caffeine 
significantly reduced the onset threshold for both MC 
twitch [Figure 1A] and THE [Figure 1B], further 
supporting the hypothesis that the proconvulsant effect of 
low-dose caffeine likely stems from A1R antagonism. 

Despite numerous reports on the proconvulsant effects 
of caffeine,[6,29] some doses of caffeine do not alter seizure 
thresholds. For instance, a dose of 20 mg/kg of caffeine had 
no impact on PTZ-induced seizures in adult rats.[30] 

Similarly, doses of 100 or 200 mg/kg did not affect the 
PTZ-induced seizure threshold.[31] In another study, doses 
of 60 or 80 mg/kg of caffeine did not influence the PTZ-
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induced seizure threshold.[7] Additionally, a dose of 92.4 
mg/kg of caffeine had no effect on MES in mice.[8] 

Consistent with our previous findings,[9] a dose of 100 
mg/kg of caffeine did not significantly alter the onset 
threshold for MC twitch. Thus, our results align with 
previous studies indicating that certain doses of caffeine do 
not impact seizure susceptibility. 

Despite having no effect on MC twitch [Figure 1A], 
caffeine at a dose of 100 mg/kg significantly decreased the 
threshold for the onset of THE [Figure 1B]. It is widely 
recognized that MC twitch originates from the forebrain, 
while THE arises from the hindbrain.[32] Caffeine exhibits 
a higher affinity for A2AR (approximately 2.4 μM) than 
A1R (approximately 12 nm).[33] The impact of caffeine on 
seizure susceptibility depends on the expression levels and 
types of ARs present. The differential effects of caffeine at 
a dose of 100 mg/kg on MC twitch and THE may be 
attributed to the asymmetric distribution of A1R and A2AR 
in the CNS and the dose-dependent effects of caffeine on 
ARs. 

Given that the activation of A2AR increases glutamate 
release, the inhibitory effect of caffeine at a dose of 100 
mg/kg on A2AR may explain why this dose does not affect 
MC twitch. Consistent with our findings, PTZ-induced 
clonic and tonic seizure thresholds were increased in A2AR 
knockout mice.[34] Our previous study using selective 
antagonists of A1R and A2AR also suggested that caffeine at 
a dose of 100 mg/kg has a more inhibitory effect on A2AR 
than A1R.[9] Additionally, A2AR is known to interact with 
A1R, forming an A1R-A2AR heterodimer in glutamatergic 
nerve terminals.[25] Activation of A2AR inhibits A1R 
signaling in the heterodimer, leading to increased 
glutamate release.[35] It is possible that fewer A1R-A2AR 
heterodimers are formed due to lower A2AR distribution in 
the hindbrain, potentially explaining the proconvulsant 
effect of caffeine at a dose of 100 mg/kg on THE through 
A1R inhibition. Further experiments are needed to clarify 
the specific effect of caffeine at this dose on A2AR. 

NO, a neurotransmitter/neuromodulator, plays various 
roles in physiological and pathological functions. NO 
binding to its receptor, soluble guanylate cyclase (sGC), 
increases cGMP formation in the CNS. cGMP activates 
different isoforms of protein kinase G (PKG), which 
regulate neurotransmitter release and uptake, synaptic 
transmission, neuronal differentiation, and gene 
expression.[36] NO has been implicated in seizure 
susceptibility, with conflicting results in different 
experiments.[14-16] In our study, we utilized L-arginine (an 
NOS precursor), SNP (a NO donor), and L-NAME (a 
nonspecific NOS inhibitor) to investigate NO involvement 

in caffeine's effect on seizure threshold. Administration of 
L-arginine or SNP alone supported the proconvulsant 
effect of NO, with higher doses showing increased 
susceptibility to seizures, while L-NAME did not alter the 
seizure threshold [Figures 2A, 2B]. This further supports 
the proconvulsant role of NO in the PTZ model of seizure 
activity. Previous studies have shown that high doses of L-
arginine can increase seizure susceptibility due to NO-
induced cGMP synthesis and heightened hyper-
excitability.[34] 

Recent research indicates a connection between caffeine 
and NO. Several studies have suggested that caffeine can 
influence NO production. For example, the NO-cGMP 
pathway is involved in the enhancement of ketorolac-
induced antinociception by caffeine.[18] Additionally, NO 
plays a role in modulating caffeine-induced locomotor 
activity.[19] The NO-cGMP pathway has also been linked to 
the anticonvulsant effect of adenosine.[12] In the current 
study, we observed that a dose of 100 mg/kg of caffeine 
significantly reduced the levels of NO metabolites in the 
brain. Activation of the A1R receptor decreases NO 
production, while activation of the A2AR receptor increases 
NO production.[17] Given the relationship between NO 
and adenosine, it is plausible to conclude that caffeine 
interacts with NO to some extent, similar to 
adenosine.[12,13] 

In the present study, pre-treatment with normally 
ineffective doses of L-arginine or SNP exacerbated the 
proconvulsant effects of caffeine at a dose of 10 mg/kg 
[Figures 3A, 3B]. Conversely, pre-treatment with these 
same doses of L-arginine or SNP transformed the lack of 
effect of caffeine at a dose of 100 mg/kg into a 
proconvulsant effect [Figures 4A, 4B]. On the other hand, 
pre-treatment with normally ineffective doses of L-NAME 
reversed the proconvulsant effects of caffeine at both 10 
mg/kg [Figures 3A, 3B] and 100 mg/kg [Figures 3A, 3B]. 
These findings support our hypothesis regarding the 
involvement of NO in the anti-seizure effects of caffeine. 
 
Conclusions 

The current findings demonstrate the dose-dependent 
impact of caffeine on seizure activity. Low doses of caffeine 
(up to 50 mg/kg) reduced the threshold for clonic and 
tonic seizures, whereas high doses of caffeine (100 mg/kg) 
specifically lowered the threshold for tonic seizures. 
Furthermore, through the use of L-arginine (a substrate 
for NOS), sodium nitroprusside (a NO donor), and L-
NAME (a non-selective NOS inhibitor), we established the 
involvement of the NO-cGMP pathway in mediating the 
central effects of caffeine on seizure activity.  
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